Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(20): 11358-11374, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37791854

RESUMO

The promoter of the high-affinity glucose transporter Gth1 (PGTH1) is tightly repressed on glucose and glycerol surplus, and strongly induced in glucose-limitation, thus enabling regulated methanol-free production processes in the yeast production host Komagataella phaffii. To further improve this promoter, an intertwined approach of nucleotide diversification through random and rational engineering was pursued. Random mutagenesis and fluorescence activated cell sorting of PGTH1 yielded five variants with enhanced induction strength. Reverse engineering of individual point mutations found in the improved variants identified two single point mutations with synergistic action. Sequential deletions revealed the key promoter segments for induction and repression properties, respectively. Combination of the single point mutations and the amplification of key promoter segments led to a library of novel promoter variants with up to 3-fold higher activity. Unexpectedly, the effect of gaining or losing a certain transcription factor binding site (TFBS) was highly dependent on its context within the promoter. Finally, the applicability of the novel promoter variants for biotechnological production was proven for the secretion of different recombinant model proteins in fed batch cultivation, where they clearly outperformed their ancestors. In addition to advancing the toolbox for recombinant protein production and metabolic engineering of K. phaffii, we discovered single nucleotide positions and correspondingly affected TFBS that distinguish between glycerol- and glucose-mediated repression of the native promoter.


Assuntos
Glucose , Regiões Promotoras Genéticas , Saccharomycetales , Glucose/metabolismo , Glicerol/metabolismo , Nucleotídeos/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
2.
Fungal Genet Biol ; 85: 71-82, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26563416

RESUMO

Branched chain amino acid aminotransferases (BCATs) catalyze the last step of the biosynthesis and the first step of the catabolism of branched chain amino acids. In Saccharomyces cerevisiae, BCATs are encoded by the ScBAT1 and ScBAT2 paralogous genes. Analysis of Lachancea kluyveri genome sequence, allowed the identification of the LkBAT1 locus, which could presumably encode a BCAT. A second unlinked locus (LkBAT1bis), exhibiting sequence similarity to LkBAT1 was also identified. To determine the function of these putative BCATs, L. kluyveri mutant strains lacking LkBAT1, LkBAT1bis or both genes were generated and tested for VIL metabolism. LkBat1 displayed branched chain aminotransferase activity and is required for VIL biosynthesis and catabolism. However, Lkbat1Δ mutant is a valine and isoleucine auxotroph and a leucine bradytroph indicating that L. kluyveri harbors an alternative enzyme(s) involved in leucine biosynthesis. Additionally, heterologous reciprocal gene complementation between S. cerevisiae and L. kluyveri orthologous LkBAT1, ScBAT1 and ScBAT2 genes, confirmed that the mitochondrial LkBat1 functions as BCAT in S. cerevisiae, restoring wild type phenotype to the ScBAT1 null mutant. Conversely, LkBAT1bis did not display a role in BCAAs metabolism. However, when ethanol was used as carbon source, deletion of LkBAT1bis in an Lkbat1Δ null strain resulted in an extended 'lag' growth phase, pointing to a potential function of LkBAT1 and LkBAT1bis in the aerobic metabolism of L. kluyveri. These results confirm the BCAT function of LkBAT1 in L. kluyveri, and further support the proposition that the BCAT function in ancestral-type yeasts has been distributed in the two paralogous genes present in S. cerevisiae.


Assuntos
Saccharomycetales/enzimologia , Transaminases/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Isoleucina/genética , Isoleucina/metabolismo , Leucina/genética , Leucina/metabolismo , Mitocôndrias/metabolismo , Saccharomycetales/genética , Transaminases/genética , Valina/genética , Valina/metabolismo
3.
Eukaryot Cell ; 14(6): 564-77, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25841022

RESUMO

Production of α-isopropylmalate (α-IPM) is critical for leucine biosynthesis and for the global control of metabolism. The budding yeast Saccharomyces cerevisiae has two paralogous genes, LEU4 and LEU9, that encode α-IPM synthase (α-IPMS) isozymes. Little is known about the biochemical differences between these two α-IPMS isoenzymes. Here, we show that the Leu4 homodimer is a leucine-sensitive isoform, while the Leu9 homodimer is resistant to such feedback inhibition. The leu4Δ mutant, which expresses only the feedback-resistant Leu9 homodimer, grows slowly with either glucose or ethanol and accumulates elevated pools of leucine; this phenotype is alleviated by the addition of leucine. Transformation of the leu4Δ mutant with a centromeric plasmid carrying LEU4 restored the wild-type phenotype. Bimolecular fluorescent complementation analysis showed that Leu4-Leu9 heterodimeric isozymes are formed in vivo. Purification and kinetic analysis showed that the hetero-oligomeric isozyme has a distinct leucine sensitivity behavior. Determination of α-IPMS activity in ethanol-grown cultures showed that α-IPM biosynthesis and growth under these respiratory conditions depend on the feedback-sensitive Leu4 homodimer. We conclude that retention and further diversification of two yeast α-IPMSs have resulted in a specific regulatory system that controls the leucine-α-IPM biosynthetic pathway by selective feedback sensitivity of homomeric and heterodimeric isoforms.


Assuntos
2-Isopropilmalato Sintase/metabolismo , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , 2-Isopropilmalato Sintase/genética , Retroalimentação Fisiológica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Protein Pept Lett ; 20(5): 489-98, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22973840

RESUMO

Antimicrobial peptides (AMPs) constitute an important alternative in the search for new treatments against pathogens. We analyzed the sequence variability in cytokine and chemokine proteins to investigate whether these molecules contain a sequence useful in the development of new AMPs. Cluster analysis allowed the identification of tracts, grouped in five categories showing structure and sequence homology. The structure and function relationship among these groups, was analyzed using physicochemical parameters such as length, sequence, charge, hydrophobicity and helicity, which allowed the selection of a candidate that could constitute an AMP. This peptide comprises the C-terminal alpha-helix of chemokines CXCL4/PF-457-70. Far-UV CD spectroscopy showed that this molecule adopts a random conformation in aqueous solution and the addition of 2, 2, 2 trifluoroethanol (TFE) is required to induce a helical secondary structure. The CXCL4/PF-457-70 peptide was found to have antimicrobial activity and very limited hemolytic activity. The mechanism of action was analyzed using model kinetics and molecular dynamics. The kinetic model led to a reasonable assumption about a rate constant and regulatory step on its mechanism of action. Using molecular dynamics simulations, the structural properties the CXCL4/PF-457-70 have been examined in a membrane environment. Our results show that this peptide has a strong preference for binding to the lipid head groups, consequently, increasing the surface density and decreasing the lateral mobility of the lipids alters its functionality.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Dicroísmo Circular , Análise por Conglomerados , Bases de Dados de Proteínas , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fluoresceínas/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Cinética , Simulação de Dinâmica Molecular , Fator Plaquetário 4/química , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...